EM Fault Model Characterization on SoCs

From different architectures to the same fault model

<u>Thomas Trouchkine</u>¹, Guillaume Bouffard^{1,2}, Jessy Clédière³ September 17, 2021

³CEA, LETI, MINATEC Campus, Grenoble, France

¹National Cybersecurity Agency of France (ANSSI), Paris, France

²DIENS, École Normale Supérieure, CNRS, PSL University, Paris, France

Sensitive operations

Sensitive operations

Sensitive operations

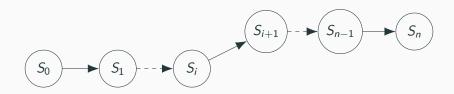
Historically

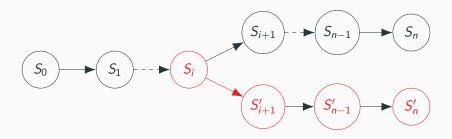
- handled by smartcards
- security designed devices
- high level security evaluation

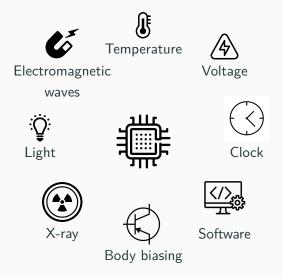
Sensitive operations

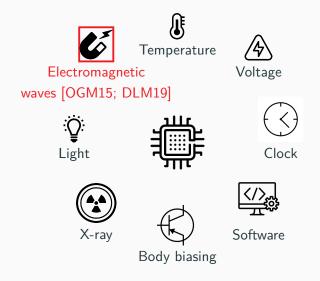
Payment

Identification


Healthcare


Historically


- handled by smartcards
- security designed devices
- high level security evaluation


Nowadays

- handled by smartphones □ or laptops □
- performance designed devices
- security added recently
- no security evaluation

Characterization - Targets

BCM2837 (Raspberry Pi 3 B)

Intel Core i3-6100T (Custom motherboard)

Case study - Characterization Method

Test program

```
orr r5, r5;
/*
 * Arbitrary number
 * of repetitions
 */
orr r5, r5;
```

Case study - Characterization Method

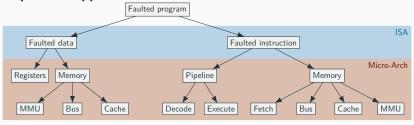
Test program

```
orr r5, r5;
/*
 * Arbitrary number
 * of repetitions
 */
orr r5, r5;
```

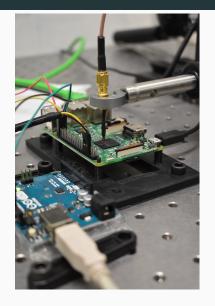
Initial values

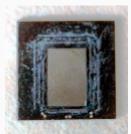
IIIILIAI VAIUES			
Initial values			
0xfffe0001			
0xfffd0002			
0xfffb0004			
0xfff70008			
0xffef0010			

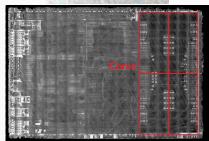
Case study - Characterization Method

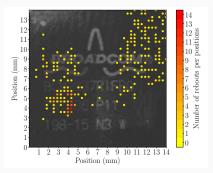

Test program

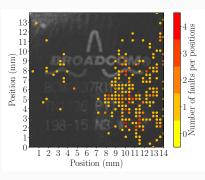
```
orr r5, r5;
/*
 * Arbitrary number
 * of repetitions
 */
orr r5, r5;
```


Initial values

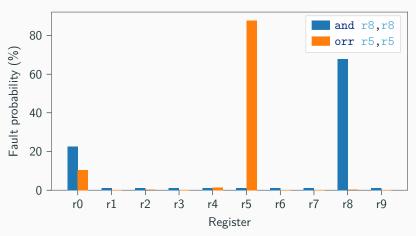

IIIILIAI VAIUES		
Register	Initial values	
r0	0xfffe0001	
r1	0xfffd0002	
r2	0xfffb0004	
r3	0xfff70008	
r4	0xffef0010	


Top down approach

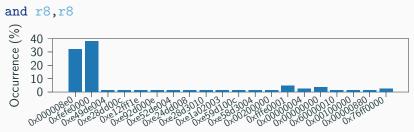

Characterization - BCM2837 (Raspberry Pi 3)

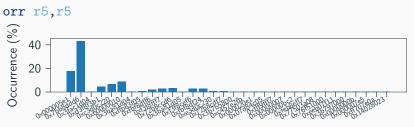


Characterization - BCM2837 (Raspberry Pi 3)

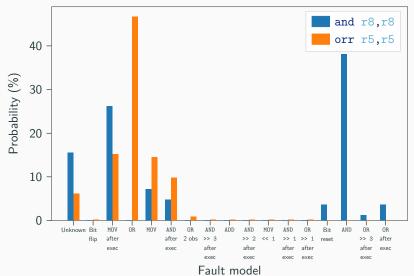


Spots leading to reboots

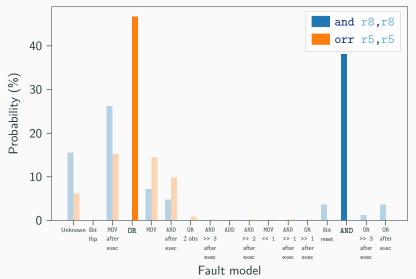



Spots leading to faults

Faulted register distribution regarding the executed instruction



Faulted value distribution regarding the executed instruction



Fault model distribution regarding the executed instruction

Fault model distribution regarding the executed instruction

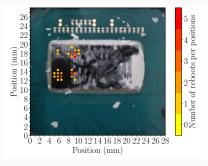
Instruction matching the OR fault model for the orr r5,r5 instruction

Faulted instruction	Occurrence (%)
orr r5,r1	92.54 %
orr r5,r0	6.14 %
orr r5,r7	1.32 %

Instruction matching the OR fault model for the orr r5,r5 instruction

Faulted instruction	Occurrence (%)
orr r5,r1	92.54 %
orr r5,r0	6.14 %
orr r5,r7	1.32 %

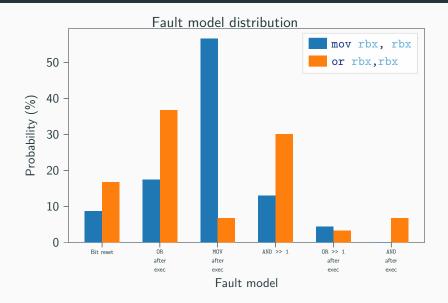
Instruction matching the AND fault model for the and r8,r8 instruction


Faulted instruction	Occurrence (%)
and r8,r0	100 %

Characterization - Intel Core <u>i3-6100T</u>

Characterization - Intel Core i3-6100T

or rbx,rbx



Spots leading to reboots

Faulted register:

• rbx in 100% of the cases

Characterization - Intel Core i3-6100T

Conclusion

- Different injection mediums have shown the similar fault models on different architecture (ARM, x86) and targets:
 - we suppose that there is an underlying common mechanism sensitive to perturbation
 - the instruction cache was identified as faulted on the BCM2837
 - EM fault injection is less efficient on flip chips
- These faults are suitable for an AES DFA

Questions?

Bibliography i

References

[DLM19] Mathieu Dumont, Mathieu Lisart, and
Philippe Maurine. "Electromagnetic Fault Injection:
How Faults Occur". In: 2019 Workshop on Fault
Diagnosis and Tolerance in Cryptography, FDTC 2019,
Atlanta, GA, USA, August 24, 2019. IEEE, 2019,
pp. 9–16. DOI: 10.1109/FDTC.2019.00010. URL:
https://doi.org/10.1109/FDTC.2019.00010.

Bibliography ii

[OGM15] Sébastien Ordas, Ludovic Guillaume-Sage, and Philippe Maurine. "EM Injection: Fault Model and Locality". In: 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2015, Saint Malo, France, September 13, 2015. Ed. by Naofumi Homma and Victor Lomné. IEEE Computer Society, 2015, pp. 3–13. DOI: 10.1109/FDTC.2015.9. URL: https://doi.org/10.1109/FDTC.2015.9.